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The Fixing America's Surface Transportation Act (FAST Act) highlights a data-driven method to improve traffic
safety on all public paved roads in the U.S. The first edition of the Highway Safety Manual (HSM) is a widely
used tool that provides crash predictive models in the form of safety performance functions (SPFs). There are
no specific SPFs for low-volume roadways in the HSM. It is important to know that low-volume roadways are
the major roadway types in terms of total mileage. This study used 2015–2019 crash data from Texas, incorpo-
rating with other relevant geometric and traffic variables, to develop SPFs for a specific low-volume roadway
type (rural minor collector two-lane roadways). This study proposed a rules-based SPF developed approach
that makes the prediction accuracies higher compared to the full model. The R2 values range from 0.18 to 0.22
for all data (without splitting) for different injury level models. The prediction accuracies are improved in the de-
cision tree-based models. For different class specific models (based on injury levels), the R2 values range from
0.25 to 0.41. Three SPF groups are developed based on crash injury types. The SPFs can provide guidance in
refining the prediction accuracies of rural minor collectors.
© 2021 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Fixing America's Surface Transportation Act (FAST Act) high-
lights a data-driven method to improve traffic safety on all public
paved roads in the U.S. [1]. The first edition of the Highway Safety
Manual (HSM) is considered the most popular and widely used tool to
predict traffic crashes on different facility types [2]. Safety Performance
Function (SPF) is a crash prediction equation, which is developed to
estimate or predict the expected average crash frequency per year at a
location as a function of geometric and operational variables. Part C of
the HSM provides a list of predictive models, in the form of SPFs, that
use different traffic and geometric data inputs. The HSM SPFs focus
on four major facility types: 1) rural two-lane two-way roadways;
2) rural multilane highway; 3) urban and suburban highways; and
4) rural and urban interstates and freeways. For each of these facility
types, analysts can use SPFs to estimate the total crash frequencies (or
crash frequencies based on different injury levels) under certain base
conditions.
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Low-volume roads (LVRs) are defined as roadways with daily traffic
volumes less than the conventional values of other higher functional
roadways. Three roadway functional classes are generally considered
LVRs: 1) rural local (7R), 2) urban local (7U), and 3) rural minor collec-
tor (6R). Due to budgetary constraints, data collection on LVRs is usually
sporadic. Additionally, stations with count data are not based on year-
long traffic counts. In many cases, short-term traffic counts are usually
converted to annual average daily traffic (AADT). This study acquired
traffic count, roadway network, and crash data on ruralminor collectors
to develop SPFs with an aim to improve the accuracy of crash predic-
tions. This study proposed rules-based methods for SPF development
to improve prediction accuracies.

The rest of the paper is organized as follows. In the next section, a
brief overview of relevant studies is provided. The next section is meth-
odology, which is comprised of three sub-sections: 1) concepts of pre-
dictive modeling, 2) rules-based modeling, and 3) data collection and
analysis. The following section is ‘results and discussions.’ The last
section, ‘conclusions,’ provides a broad overview of this study, general
findings, limitations, and future needs.

2. Literature review

The improvement of roadway safety is a top priority in transporta-
tion safety planning. Historical crash data analytics is the most popular
approach in conducting transportation safety research. The general
ting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
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approach is to develop crash prediction models using the historical
crash data and other co-variates such as roadway, traffic, and environ-
mental variables. A crash prediction model provides a simple interpre-
tation of the complex structure of crash data. The overall crash data
analysis is based on two basic categories: frequency analysis (crash
counts), and classification analysis (crash injury types). Three extensive
survey papers provide a grand picture of the latest crashmodeling tech-
niques [3–5]. Interested readers can consult these papers for additional
insights on crash data modeling approaches.

Many SPFs and related crash modification factors (CMFs) have been
developed for roadways with moderate to high traffic volume. How-
ever, limited studies have developed SPFs for LVRs, mostly due to the
lack of traffic volume data on these roadways. As traffic volume is one
of the key components of SPFs, the absence of this measure will make
the models biased and less powerful in producing accurate estimates.
This section provides a brief overview on LVR related safety studies.

Zegeer et al. [6] performed a comprehensive safety analysis on LVRs
by collecting around 4100 mi of rural two-lane roadway segments
(AADT ≤2000 vehicles per day or vpd) from seven states. To validate
the SPFs, this study used independent databases of 54,000mi roadways
from three states (Minnesota, Illinois, and North Carolina). The results
show that shoulder type (paved or unpaved)was not statistically signif-
icant. Studies on unpaved roadway safety is limited in number. Caldwell
and Wilson [7] compared crash injury rates on unpaved county road
segments to crash injury rates on all roads in Wyoming. Crash occur-
rence on county roads were found to be five times more likely than
crashes on all roads. This study provided a systematic way of segment
prioritization for safety improvement. Using crash data from Kentucky
and North Carolina for several years (1993–1995), Stamatiadis et al.
[8] identified several driver-related contributing factors on LVRs
(AADT ≤ 1000 vpd). Considering data from rural areas, Achwan and
Rudjito [9] depicted the extent of traffic characteristics on LVRs. The
study demonstrated that the key vulnerable groupsweremotorcyclists,
pedestrians, and truck associated causalities. In his study, Madsen [10]
determined that 60% of those killed and 75% of the injured persons in
LVR crashes were occupants of non-farm vehicles. Some of the key con-
tributing factors are the lack of retroreflective signs and taillights on
slow-moving vehicles. Using data from gravel roads in Kansas, Liu and
Dissanayake [11] surveyed county agencies and performed an analysis
by incorporating speed. The findings demonstrate that traffic speeds
are not significantly affected by the segment width, surface type, and
percentage of large vehicles in traffic, but not with posted speed limit.
In a follow-up study, Liu andDissanayake [12] developed logistic regres-
sion models to find factors associated with injury crashes on gravel
roads in Kansas. The findings indicate that failure to use safety equip-
ment, intoxication, speeding, distraction, aging drivers, failure to yield,
and ruts/potholes on surfaces increased the likelihood of more severe
crash occurrence. The NCHRP synthesis report provided a handful of ef-
fective safety tools and strategies to improve safety on LVRs [13]. A re-
port, published in 2006, showed the effectiveness of several key
countermeasures that are appropriate for LVRs [14]. Al-Kaisy et al. [15]
developed a prioritization scheme as a way to produce crash risk
index that can be used in ranking candidate sites for safety improve-
ments on low-volume roads in Oregon. To predict total crashes, as
well as fatal and injury crashes, Das et al. [16] used 2013–2017 traffic
count along with roadway network and crash data from North Carolina
to develop six SPFs for three LVRs (rural local, urban local, and rural
minor collector roadways). Additionally, a sensitivity analysis was per-
formed to show how traffic volumes influence expected crash frequen-
cies. Farid et al. [17] conducted a crash severity analysis of motorcycle
crashes on low-volume roadways. If all other conditions are the
same, speed and impairment showed high likelihood of motorcycle
crashes with severe injuries. Stapleton et al. [18] developed several
SPFs for rural two-lane county roadway segments in Michigan. Three
separate models were developed: 1) paved non-federal-aid segments
(NFAS), 2) paved federal-aid segments, and 3) low-volume NFAS
2

(both paved and unpaved). The results show that county NFAS paved
roadways showed almost similar crash rates to the HSM-base rural
two-lane roadway model.

The literature review indicates that a handful of studies performed
safety analysis focusing on LVRs. One of the common finding indicates
that many important and influential variables are missing on low-
volume roadways. For example, traffic volume count is mostly missing
on low-volume roadways. Consideration of traffic volume is a critical
component for SPF development. Most the studies focused on develop-
ing SPFswith limited number of siteswith available variables. It is found
that none of the studies focused on the improvement of the SPF predic-
tion accuracy. The current study aims to mitigate this research gap by
applying an innovative rules-based SPF development approach. The
key objective of this study is develop precision based SPFs for Texas
rural minor collector two-lane roadways.

3. Methodology

3.1. Concepts of predictive modeling

Most of the traffic safety analysis studies use the empirical Bayes
(EB) estimation method to evaluate expected yearly crashes (or other
temporal durations) before and after site improvement with counter-
measure or a group of countermeasures. The EB method uses both pre-
dicted number of crashes (from the SPFs) and observed number of
crashes to provide the measures of expected number of crashes.

An SPF is an equation that can predict themean crash frequencies for
a temporal duration at a location as a function of geometric properties of
the roadway segment or intersection and traffic volume measures.
There are two major uses of the SPF: (1) to develop a localized SPF for
the facility and certain crash types for a temporal duration, or (2) to cal-
ibrate the SPFs in the first version of the HSM. A baseline SPF can be de-
veloped using segment length and annual average daily traffic (AADT):

CPredicted ¼ exp β0 þ β1 � ln Lð Þ þ β2 � ln AADTð Þ½ � ð1Þ

where:

CPredicted ¼ predicted crash count

β0,β1,β2 ¼ coefficients

L ¼ segment length

AADT ¼ annual average daily traffic

One can predict crashes (N), by multiplying three components:
baseline SPF (CPredicted), a series of CMFs and a calibration factor, C:

N ¼ CPredicted �∏CMF� C ð2Þ

It can be noted that the EB approach is based on a weighted average
concept. Many studies used this method to develop localized SPFs for
different facility and crash types [19–31].

3.2. Rules based modeling

New modeling approaches are needed to tackle the complexities of
crash data and the associated improvement of estimation accuracy.
Conventional SPFs generally examine themean effects of key contribut-
ing factors and ignore subgroups with different factors. Due to the gen-
eralization, this approach fails to inquire the specific subgroup effects
within the population of roadway segments or intersections. Rule-
based modeling is one of several emerging approaches that avoid
these consequences. These methods can identify subgroups effects
without imposing any prior assumption or group of assumptions [32].
The rules provide a subset of SPFs that represent subsets of roadway
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segments or intersections by not only considering the interactions
between the contributing factors but also their ranges. Recursive
partitioning is one of the simplest rules-based modeling techniques.
This procedure led to the models with different boxes (see Fig. 4) and
the splitting variables and their ranges. This study used two open source
R (rpart, rattle) packages to perform the decision tree modeling [33,34].

3.3. Data description

This study assembled a comprehensive database of roadway, traffic
volume, and crash data for rural minor collectors in Texas. Two major
Texas specific data sources (Crash Record Information Systems [CRIS]
and Road-Highway Inventory Network Offloads [RHiNO]) were used
for the five-year period 2015–2019. SPF development requires a com-
prehensive crash database with geocode crash location information or
relevant route information, roadway type, injury type, collision type,
and other relevant information. The injury classification system
(known as KABCO) divides crash severity into five major groups:
1) fatal injury (K), 2) incapacitating or severe injury (A), 3) non-
incapacitating or moderate injury (B), 4) minor or complaint injury
(C), and 5) no injury or property damage only (PDO) or O. It is impor-
tant to note that the new second edition of its low-volume road guid-
ance includes design advice for local and minor collector roads
carrying AADT volumes of 2000 vpd or less, by replacing the previous
threshold of 400 vpd or less [35]. This study used a threshold of 4000
vpd or less for the AADT measures. However, around 98% of the used
roadways have AADT 2000 vpd or less. This study kept 4000 vpd as
the threshold because throwing out 2% of these sites are involved with
10% of all crashes. As the definition of low-volume roadways has been
changing over the years (previously 400 vpd roadways were defined
as low-volume roadways, which has been increased to 2000 vod in
the recent years), it is important to examine impact of a larger threshold
of AADT range for the low-volume roadways.

To develop the crash database, the following steps are taken (see
Fig. 1). Software usage for each step in shown in parenthesis.

• Step 1: Collect five (2015–2019) years of crash data. Use filter
‘INTER_RELAT_ID’ to remove intersection and intersection related
crashes. Add several filters (AADT < 4001 vpd, number of lanes = 2,
segment length > 0.099 mi.) to prepare the database of interest. (R)

• Step 2: Geolocate crashes and create a geodatabase or a shapefile.
(ArcGIS)

• Step 3: Create a geodatabase for rural minor collector two-lane road-
ways from the comprehensive roadway inventory data. (ArcGIS)
Fig. 1. Flowchart of data
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• Step 4: By using the ‘Near’ function, assign crash locations to roads.
(ArcGIS)

• Step 5: Match roadway names in both crash data and roadway inven-
tory data and remove the erroneous entries. (R)

• Step 6: Assign number of crashes based on injury type and year to
develop the final dataset. (R)

The primary dataset contains several variables. This study selected
variables such as type and width of shoulders and medians for the
preliminary analysis. After performing a correlation analysis and deter-
mined variable importance measures (using open sour R software ‘vip’
package [36]), only two variables (segment length and AADT) were
found as the best explanatory variables. Table A (see the Appendix)
lists descriptive statistics of key measures (including measures such as
mean, maximum, minimum, inter quantile range, kurtosis, and skew-
ness) based on the classes determined from the decision tree rules
modeling. Fig. 2(a–d) shows the mean measures of the key variables
by different datasets based on crash injury types. The bar plots show
that thresholds of different variables widely vary from one class to
another class.

Fig. 3 shows the correlation plot for 6R roadways for KABCO model.
The correlation measures indicate that only segment length and AADT
are statistically significant factors. The other correlation analysis for
other models show also same finding.

To determine the optimum number of classes (or clusters), different
optimized complexity parameters have been used by performing vali-
dation efforts. To explain the decision tree procedure, a dataset for 6R
roadways for KABCO model has been selected. Using count of KABCO
crashes as the response variable, thedecision rules algorithm (classifica-
tion and regression tree or CART) was applied to the dataset determine
the appropriate number of clusters. A threshold of three branches have
been used to limit the number of clusters. Fig. 4 (a) provides annotation
of the measures shown in the decision tree developed for KABCO
models. All of the decision trees used in this study have been validated
by splitting data into training and test data. For example, the decision
rules generated for KABCO crashes on rural minor collector two-lane
roadways are:

• Class 1 rule: LEN_SEC (Segment Length)< 1.3 & ADT_CUR (AADT Cur-
rent or the latest year AADT) < 612 (5963 segments with mean crash
frequency = 0.28 crash/year per segment) [Note: the variable codes
are described in the notes of Table A]

• Class 2 rule: LEN_SEC < 1.3 & ADT_CUR > 611 (1458 segments with
mean crash frequency = 1 crash /year per segment)

• Class 3 rule: LEN_SEC > 1.2 & ADT_CUR < 331 (2622 segments with
base development.



Fig. 2. Mean measures of key variables.
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mean crash frequency = 0.8 crash/year per segment)
• Class 4 rule: LEN_SEC > 1.2 & ADT_CUR > 330 (1169 segments with
mean crash frequency = 3.3 crashes/year per segment)

A parallel coordinate plot was used to understand sub-group effects
in the data. Fig. 5 shows a parallel coordinate plot for four key variables
used in the KABCO modeling framework. The colors of the links are
based on the class category. Compared to other classes, class 2 shows
higher AADT values (many light green links are associated with the
high value of AADT). Similarly, class 3 and class 4 shows higher segment
Fig. 3. Correlation

4

length values based on the visualization of the links. It is obvious that
class 3 and class 4 are associated with rules of segment length greater
than 1.2 miles.
4. Results and discussions

4.1. Rule-based SPFs

For Texas rural minor collector two-lane roadways (shown as 6R in
Table 1), there are 11,212 segments with available AADT data. Table 1
analysis plot.



Fig. 4. Decision trees for three datasets based on crash counts by severity groups.
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lists the developed SPFs for all data and subset data (based on decision-
rule criteria) for there injury levels: 1) KABCO, 2) KABC, and 3) KAB. The
table shows themodel equations alongwith the overdispersion param-
eter (b) and the loglikelihood of each model. As these measures are
based on different clusters of datasets, explanations of these measures
are not needed to be detailed. Four decision trees have been generated
by exploring different complexity parameter thresholds. For example,
6R KABCO dataset shows five models: 1) All (N6R, tot, all) represents
data before performing decision tree, 2) Case 1 to Case 4 (N6R, tot, class1,
N6R, tot, class2, N6R, tot, class3, N6R, tot, class4): four classes of data based on
the decision tree filters. This study developed negative binomial (NB)
models for each of these five cases. Similar actions are taken for other in-
jury levels (KABC and KAB). As this study contains 15 SPFs, validation of
15 SPFswill be extensive. KABCOClass 1 data has been divided into train
(75%) data and validation (25%) data. The validation model results are
similar to the train model.
5

As mentioned earlier, regression models examine the mean effects
of the explanatory variables and ignore subclass effect in the overall
population of all roadway segments. This study performed decision
tree algorithms to determine the subclass effect in the dataset. As the
current model is completely based on the rural minor collector two-
lane roadways in Texas, transferability of these models to other states
should be carefully considered.

4.2. Model validation

The R2 values range from 0.18 to 0.22 for all data (without split-
ting) for different injury level models. The prediction accuracies are
improved in the decision tree-based models. For different class spe-
cific models (based on injury levels), the R2 values range from 0.25
to 0.41. The adjusted R2 values are same with R2 values for the
developed models. To understand the goodness-of-fit, another



Fig. 5. Parallel coordinate plots for four key variables (for KABCO severity group data).
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quick diagnostic is the development of Cumulative Residual (CURE)
plots. Residuals indicate the disparities between historical crash fre-
quencies and predicted crash frequencies. Modeling fitting can be
performed by examining the residuals. If the surrounding residuals
of a model are close to zero, the model can be considered as a good-
fit model. CURE plot is a good visualization tool to examine the SPF
predictions based on the individual explanatory variables used in
the model. A horizontal stretch of the CURE plot infers to a region
of the variable where the estimates are unbiased [37]. On the con-
trary, in locations where the CURE plot drifts up or down signifi-
cantly, the estimates are not considered to be unbiased. The CURE
plot for an unbiased SPF must be within the boundaries of two stan-
dard deviations [37].

Fig. 6, Fig. 7, and Fig. 8 show the CURE plots based on the model-
ing outcomes of three SPF groups based on the injury type:
1) KABCO, 2) KABC, and 3) KBC. The left side of each of these three
Table 1
Developed SPFs.

Roadway and severity group Class Safety performance functions

6R (KABCO) All Rule: All Data
N6R, tot, all = exp (−4.759) × Length

Class 1 Rule: LEN_SEC < 1.3 & ADT_CUR <
N6R, tot, class1 = exp (−4.170) × Len

Class 2 Rule: LEN_SEC < 1.3 & ADT_CUR >
N6R, tot, class2 = exp (−4.298) × Len

Class 3 Rule: LEN_SEC > 1.2 & ADT_CUR <
N6R, tot, class3 = exp (−4.627) × Len

Class 4 Rule: LEN_SEC > 1.2 & ADT_CUR >
N6R, tot, class4 = exp (−4.606) × Len

6R (KABC) All Rule: All Data
N6R, kabc, all = exp (−5.636) × Leng

Class 1 Rule: LEN_SEC < 1.2
N6R, kabc, class1 = exp (−5.335) × Le

Class 2 Rule: LEN_SEC > 1.1 & ADT_CUR <
N6R, kabc, class2 = exp (−5.323) × L

Class 3 Rule: LEN_SEC > 1.1 & 207 < ADT_C
N6R, kabc, class3 = exp (−4.043) × L

Class 4 Rule: LEN_SEC > 1.1 & ADT_CUR >
N6R, kabc, class4 = exp (−4.707) × L

6R (KAB) All Rule: All Data
N6R, kab, all = exp (−5.949) × Leng

Class 1 Rule: LEN_SEC < 1.3
N6R, kab, class1 = exp (−5.846) × Le

Class 2 Rule: LEN_SEC > 1.2 & ADT_CUR <
N6R, kab, class2 = exp (−6.169) × Le

Class 3 Rule: 1.2 < LEN_SEC < 2.5 & ADT_C
N6R, kab, class3 = exp (−5.401) × Le

Class 4 Rule: LEN_SEC > 2.5 & ADT_CUR >
N6R, kab, class4 = exp (−3.999) × Le
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figures show CURE plots based on segment length. The right side of
each of these three figures show CURE plots based on AADT. There
are five CURE plots in each side of Fig. 6–8. Investigation on the pro-
jections of the residuals of each plot will show the improved perfor-
mance measures of the class-based models. The CURE plots of the
main models and rules based models clearly indicate that rules
based model are mostly inside the confidence boundary. For exam-
ple, in Fig. 6(a), CURE plots for main KABCO model and rules-based
KABCO models for 6R roadways are shown. The residual plot (in
red) in outside of the confidence boundary in two zones. However,
the residual plots for the rule-based models (except Class 4 shows
that the residual plot is outside the bound when segment length is
above 12.5 mile) are mostly within the confidence boundary. The
CURE plots for other models show similar trends. The example
clearly shows the effectiveness of rules-based models in generating
more robust crash estimates.
Over-dispersion parameter Log-likelihood

0.900 × AADT0.766 1.3075 −22,215.077
612
gth0.898 × AADT0.658 0.8020 −7317.370
611
gth0.958 × AADT0.699 1.3710 −3676.017
331
gth0.764 × AADT0.756 0.9225 −6036.538
330
gth0.832 × AADT0.763 2.129 −5071.186

th0.940 × AADT0.736 1.2247 −12,386.275

ngth0.953 × AADT0.686 1.035 −5141.116
208
ength0.649937 × AADT0.649 0.4449 −2459.781
UR < 441
ength1.023 × AADT0.446 1.191 −1954.343
440
ength0.688 × AADT0.639 2.518 −2738.366

th0.960 × AADT0.719 1.259 −9630.336

ngth0.945 × AADT0.699 0.961 −4002.588
343
ngth0.963 × AADT0.756 0.654 −2893.847
UR > 342
ngth0.858 × AADT0.649 3.420 −1552.351
342
ngth0.619 × AADT0.501 1.935 −1137.224



Fig. 6. CURE plots for KABCO models.

Fig. 7. CURE plots for KABC models.
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Fig. 8. CURE plots for KAB models.
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5. Conclusions

The safety studies on the LVRs are limited in number. Additionally,
no prior LVR SPF modeling approached considered the improvement
of prediction accuracies. This study acquired a comprehensive database
of rural minor collector two-lane roadways in Texas. This study has
some unique contributions. First, this study developed a procedure of
using local roadway network data in estimating crash frequencies.
This study developed a reproducible database preparation framework,
which can be replicated to other states. Correlation analysis and variable
importance were performed to determine the key contributing factors.
Segment length and AADT are found as the key factors for themodel de-
velopment. Second, it developed SPFs for rural minor collector two-lane
roadways in Texas for three different injury levels (KABCO, KABC, and
KAB). The models are validated by using the interpretations of the de-
veloped CURE plots. The goodness-of-fit measures showed that the de-
cision rule-based subclass models perform better than full models.

This study is not without limitations. First, the current analysis is
limited to only one LVR facility type with 4000 vpd as the maximum
traffic volume. Second, the current study has not performed sensitivity
analysis. As the current study is more focused towards the precision ac-
curacy of the SPFs, sensitivity analysis for all models (15models)will be
comprehensive and can be considered as a scope for future studies.
8

Third, the SPFs are localized as the models are based on the available
data on rural minor collector two-lane roadways in Texas. Transferabil-
ity of these models requires careful attention in terms of the thresholds
of the explanatory variables and sample size. Fourth, the goal of this
paper is to show the performance improvement in terms of R2 and
CURE plots. Omission of other variables may be the reason. However,
road inventory data of low-volume roadways are not well maintained.
Many important geometric variables such as lane width., shoulder
width are not readily available. Future studies can perform an in-
depth investigation by exploring different performance measures (for
example, silhouette value) of decision tree outcomes.
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Appendix A
Table A

Descriptive statistics.
Attribute
D
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S
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A

Group
 Count
 Min
 Max
 Mean
9

Median
 SD
 IQR
 Skewness
 Kurtosis
ataset based on counts of KABCO crashes

ABCO15_191
 All
 11,212
 0
 41
 0.8
 0.0
 1.9
 1.0
 6.5
 77.5
Class 1
 5963
 0
 12
 0.3
 0.0
 0.7
 0.0
 4.5
 35.5

Class 2
 1458
 0
 36
 1.0
 0.0
 1.8
 1.0
 6.8
 104.4

Class 3
 2622
 0
 38
 0.8
 0.0
 1.7
 1.0
 8.3
 139.4

Class 4
 1169
 0
 41
 3.3
 2.0
 3.8
 3.0
 3.1
 16.6
EN_SEC2
 All
 11,212
 0.1
 22.6
 1.3
 0.8
 1.5
 1.5
 3.5
 24.5

Class 1
 5963
 0.1
 1.34
 0.6
 0.4
 0.4
 0.6
 0.6
 −0.9

Class 2
 1458
 0.1
 1.34
 0.5
 0.4
 0.4
 0.6
 0.7
 −0.7

Class 3
 2622
 1.35
 22.6
 2.9
 2.4
 1.8
 1.5
 3.7
 22.4

Class 4
 1169
 1.35
 21.38
 2.6
 2.1
 1.4
 1.2
 4.2
 34.5
DT_CUR3
 All
 11,212
 6
 3940
 389.2
 218.5
 493.2
 372.0
 3.0
 11.8

Class 1
 5963
 6
 611
 219.3
 185.0
 154.3
 229.0
 0.7
 −0.5

Class 2
 1458
 612
 3922
 1238.8
 990.0
 668.8
 725.3
 1.7
 2.7

Class 3
 2622
 6
 330
 131.3
 113.0
 86.7
 133.0
 0.6
 −0.7

Class 4
 1169
 331
 3940
 775.2
 589.0
 539.8
 460.0
 2.5
 7.1
UR_W4
 All
 11,212
 8
 78
 21.2
 20.0
 2.8
 2.0
 4.8
 56.7

Class 1
 5963
 8
 78
 21.2
 20.0
 2.8
 2.0
 4.5
 57.8

Class 2
 1458
 10
 72
 22.3
 22.0
 4.1
 4.0
 4.5
 32.8

Class 3
 2622
 12
 30
 20.7
 20.0
 1.8
 1.8
 1.1
 4.6

Class 4
 1169
 12
 55
 21.3
 20.0
 2.2
 2.0
 3.6
 47.4
_WID5
 All
 11,212
 0
 24
 1.4
 0.0
 2.0
 3.0
 2.2
 10.3

Class 1
 5963
 0
 22
 1.4
 0.0
 2.0
 3.0
 2.0
 8.7

Class 2
 1458
 0
 24
 1.7
 0.0
 2.7
 3.0
 2.7
 12.1

Class 3
 2622
 0
 8
 1.2
 0.0
 1.7
 2.0
 1.2
 0.1

Class 4
 1169
 0
 10
 1.4
 1.0
 1.7
 3.0
 1.2
 1.2
ataset based on Counts of KABC Crashes

ABC15_196
 All
 11,212
 0
 29
 0.3
 0.0
 0.8
 0.0
 8.4
 169.9
Class 1
 7041
 0
 14
 0.1
 0.0
 0.5
 0.0
 7.6
 139.3

Class 2
 2243
 0
 29
 0.2
 0.0
 0.9
 0.0
 18.3
 544.6

Class 3
 982
 0
 15
 0.6
 0.0
 1.1
 1.0
 4.5
 37.9

Class 4
 946
 0
 14
 1.2
 1.0
 1.5
 2.0
 2.3
 9.3
EN_SEC
 All
 11,212
 0.1
 22.6
 1.3
 0.8
 1.5
 1.5
 3.5
 24.5

Class 1
 7041
 0.1
 1.21
 0.5
 0.4
 0.3
 0.5
 0.6
 −0.9

Class 2
 2243
 1.21
 20.18
 2.8
 2.3
 1.8
 1.6
 3.4
 18.1

Class 3
 982
 1.21
 22.6
 2.5
 2.1
 1.6
 1.4
 5.1
 50.5

Class 4
 946
 1.21
 12.62
 2.4
 2.0
 1.3
 1.1
 3.0
 13.6
DT_CUR
 All
 11,212
 6
 3940
 389.2
 218.5
 493.2
 372.0
 3.0
 11.8

Class 1
 7041
 6
 3922
 421.9
 237.0
 523.2
 402.0
 2.9
 10.4

Class 2
 2243
 6
 207
 94.7
 89.0
 53.8
 85.5
 0.3
 −1.0

Class 3
 982
 208
 440
 310.7
 303.0
 67.3
 114.0
 0.3
 −1.1

Class 4
 946
 441
 3940
 925.4
 716.5
 571.6
 510.8
 2.2
 5.7
UR_W
 All
 11,212
 8
 78
 21.2
 20.0
 2.8
 2.0
 4.8
 56.7

Class 1
 7041
 8
 78
 21.4
 20.0
 3.1
 2.0
 4.8
 50.9

Class 2
 2243
 12
 32
 20.6
 20.0
 1.7
 0.0
 1.4
 5.2

Class 3
 982
 12
 30
 21.1
 20.0
 2.1
 2.0
 0.3
 3.6

Class 4
 946
 12
 55
 21.4
 20.0
 2.3
 2.0
 4.1
 52.7
_WID
 All
 11,212
 0
 24
 1.4
 0.0
 2.0
 3.0
 2.2
 10.3

Class 1
 7041
 0
 24
 1.5
 0.0
 2.1
 3.0
 2.4
 11.8

Class 2
 2243
 0
 7
 1.1
 0.0
 1.6
 2.0
 1.2
 0.2

Class 3
 982
 0
 8
 1.4
 1.0
 1.7
 3.0
 0.9
 −0.3

Class 4
 946
 0
 10
 1.4
 1.0
 1.8
 3.0
 1.3
 1.6
ataset based on Counts of KAB Crashes

AB15_197
 All
 11,212
 0
 21
 0.19
 0
 0.61
 0
 8.62
 176.43
Class 1
 7208
 0
 10
 0.09
 0
 0.36
 0
 7.11
 107.29

Class 2
 2792
 0
 21
 0.21
 0
 0.69
 0
 12.74
 320.69

Class 3
 809
 0
 8
 0.54
 0
 0.84
 1
 2.29
 9.75

Class 4
 403
 0
 15
 1.11
 1
 1.49
 2
 3.14
 19.49
EN_SEC
 All
 11,212
 0.1
 22.6
 1.3
 0.82
 1.47
 1.47
 3.5
 24.52

Class 1
 7208
 0.1
 1.26
 0.52
 0.42
 0.33
 0.55
 0.61
 −0.86

Class 2
 2792
 1.27
 22.6
 2.8
 2.27
 1.78
 1.52
 3.67
 22.55

Class 3
 809
 1.27
 2.5
 1.79
 1.75
 0.33
 0.53
 0.29
 −0.93

Class 4
 403
 2.51
 21.38
 3.82
 3.29
 1.73
 1.29
 4.14
 29.28
DT_CUR
 All
 11,212
 6
 3940
 389.22
 218.5
 493.19
 372
 3.01
 11.76

Class 1
 7208
 6
 3922
 421.32
 237
 522.59
 402
 2.87
 10.46

Class 2
 2792
 6
 342
 134.08
 115
 88.54
 135
 0.59
 −0.71

Class 3
 809
 343
 3940
 789.25
 609
 533.33
 466
 2.44
 7.35

Class 4
 403
 343
 3449
 779.54
 561
 561.88
 474
 2.34
 5.89
(continued on next page)
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able A (continued)
Attribute
S

S

Group
 Count
 Min
 Max
 Mean
10
Median
 SD
 IQR
 Skewness
 Kurtosis
UR_W
 All
 11,212
 8
 78
 21.23
 20
 2.77
 2
 4.75
 56.65

Class 1
 7208
 8
 78
 21.41
 20
 3.12
 2
 4.77
 50.99

Class 2
 2792
 12
 30
 20.73
 20
 1.79
 2
 1.07
 4.59

Class 3
 809
 12
 30
 21.19
 20
 2
 2
 0.58
 2.57

Class 4
 403
 12
 55
 21.38
 20
 2.57
 2
 5.77
 71.1
_WID
 All
 11,212
 0
 24
 1.39
 0
 1.99
 3
 2.19
 10.27

Class 1
 7208
 0
 24
 1.46
 0
 2.12
 3
 2.41
 11.76

Class 2
 2792
 0
 8
 1.2
 0
 1.69
 2
 1.14
 0.04

Class 3
 809
 0
 10
 1.42
 1
 1.78
 3
 1.19
 1.09

Class 4
 403
 0
 10
 1.41
 1
 1.66
 3
 1.25
 1.85
1 KABCO15_19 = total KABCO crashes during 2015–2019.
2 LEN_SEC = segment length (mi.).
3 ADT_CUR= Annual Average Daily Traffic.
4 SUR_W= Surface Width (ft.).
5 S_WID = shoulder width (ft.).
6 KABC15_19 = total KABC crashes during 2015–2019.
7 KAB15_19 = total KABC crashes during 2015–2019, IQR = Inter Quantile Range.
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